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We present a numerical simulation algorithm that is well suited for the study of 
noise-induced transport processes. The algorithm has two advantages over 
standard techniques: ( 1 ) it preserves the property of detailed balance for systems 
in equilibrium and (2) it provides an efficient method for calculating non- 
equilibrium currents. Numerical results are compared with exact solutions from 
two different types of correlation ratchets, and are used to verify the results of 
perturbation calculations done on a three-state ratchet. 
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1. I N T R O D U C T I O N  

Noise-induced transport processes recently have received considerable 
attention, tHE) The focus of these studies has ranged from intracellular 
transport processes tL4"5) to novel mass separation techniques based on 
thermal diffusion, t~~ Thermal fluctuations are a dominant factor in all 
biological processes that occur at the subcellular level, and it is conceivable 
that nature has evolved mechanisms to take advantage of this noisy 
environment. New experimental techniques have made it possible to study 
the motion of single motor molecules such as kinesin. "3'~4) These 
experiments have led to considerable insight into the mechanisms used by 
motor molecules to perform directed motion. As more experimental data 
have become available, the theoretical models used to describe these 
processes have become increasingly complex, tlS) Hence it is important that 
efficient and reliable numerical methods are available for studying these 
processes. 
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When studying noise-induced transport, the property of interest is the 
steady-state current produced by the system. The existence of a net drift 
indicates the ability of the system to perform useful work. Often the 
currents produced by these systems are quite small as compared to the 
magnitude of the noise. It is therefore important that numerical algorithms 
used to simulate these systems do not produce a net drift as a result of 
numerical error. A minimum requirement for a reliable algorithm is that it 
preserves the property of detailed balance for equilibrium processes. One is 
then more confident that the currents produced when the system is driven 
away from equilibrium are a direct result of the applied external forces and 
are not numerical artifacts. The relatively large fluctuations inherent in 
these systems also make the standard procedure of calculating currents by 
averaging over many realizations of the stochastic process extremely time- 
consuming. 

With these considerations in mind, we present a novel algorithm for 
numerically simulating a class of stochastic processes. While elements of 
this numerical scheme have previously been used in chemical kinetics and 
Monte Carlo simulations, we believe that our application of these ideas 
represents a new technique for studying noise-induced transport and other 
stochastic processes. In Section 2 we present the details of how the algo- 
rithm works. In Section 3 we introduce the correlation ratchet as a generic 
model for noise-induced transport processes. The numerical results of our 
algorithm are then compared against exact results for two types of correla- 
tion ratchets. Finally, in Section 4 we present asymptotic perturbation 
calculations done on a three-state model of a correlation ratchet. The 
validity of these expressions is then verified using our algorithm. Because 
the perturbation technique is itself a powerful tool for studying noise- 
induced transport processes, the details of the calculations are sketched in 
the appendix. 

2. T H E  A L G O R I T H M  

To motivate our numerical scheme, we first consider a simple system 
that consists of an overdamped particle subjected to thermal noise and a 
force due to the potential v(x). Initially we assume that the form of the 
potential v(x) leads only to bounded motion. The Fokker-Planck equation 
for the conditional probability density p for this process is 

Op Ov'(x) p 02p 
+ K T-z-~ (1) 

Ot Ox ~x" 
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where K is the Boltzmann constant, T is the absolute temperature, and the 
time t has been scaled by the reciprocal of the friction coefficient. Equation 
(1) may be written in the equivalent form 

Op OJ 
8~-+~x =0 (2) 

where J =  - v ' ( x ) p - K T O x p  is the probability current. Equation (2) has 
the form of an equation of continuity and expresses the fact that prob- 
ability is neither created nor destroyed. The stationary probability density 
Ps of this process is found by setting the left-hand side of Eq. (1) equal to 
zero. Doing this gives 

e - vr x )/KT 

P~-  z (3) 

where Z is the appropriate normalization constant. Equation (3) is con- 
sistent with the probability distribution found from equilibrium statistical 
mechanics. For this process the equilibrium probability current vanishes, 
which implies detailed balance. 1~6~ 

Single realizations of the stochastic process described by (1) are 
produced from the Langevin equation 

dx 
a t  = - v ' ( x )  + (2KT)'/2~ (4) 

where ~ is a Gaussian white noise term whose mean and variance are given 
by 

( g ( t ) )  = 0  (5) 

( g ( t )  g(s)  ) = 6( t - s) (6) 

The simplest approach for numerically simulating Eq. (4) is by discretizing 
time and using an Euler-type algorithm for advancing x(t, ,)  to x(t, ,+ 1). 
This is done as follows: 

x(t,,  + l) = x(  t,,) - Lit v'(x,,) + ( 2 K T  At)1/2 ~b, (7) 

where Llt is the time step and ~b,, is a Gaussian-distributed random variable 
with zero average and a variance of unity, independently chosen at each 
time step. 

Instead of discretizing time, we could just as easily discretize the 
dependent variable x. Making x discrete converts the problem into a jump 
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Fig. 1. 
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The jump process used to approximate the stochastic process. 

process. 2 That  is, we must now consider the rates at which jumps occur out 
of x ,  and into either x,,_ ~ or x ,  +1 and the corresponding reverse trans- 
itions. This situation is depicted in Fig. 1. The master equation for this 
process is 

dP.  
= U ' - ] P  " - l  - - D ' P " + D " + I P  " + l -  U"P" (8) 

dt 

where P .  is the probability for being at site x .  at time t, U" is the rate at 
which transitions occur from x,, to x .  +~ and D" is the rate at which trans- 
itions occur from x .  to x . _  ~. We are now left with the problem of deter- 
mining the appropriate values of U" and D" to use for this process. To find 
these values, we first consider the stationary probabili ty density given by 
Eq. (2). One criterion for Eq. (8) to be a valid approximation to the 
stochastic process we are considering is that the stationary probabili ty p s  
for being at site x,, is 

Ax  e-V(Xn)/KT 
P~' - Z (9) 

Since Eq. (8) is being used to describe an equilibrium process, the condi- 
tion of detailed balance must be enforced. This requirement can be 
expressed as 

D,,+ Ip .+ l = U'P" (10) 

Together Eqs. (9) and (10) imply 

pn + I U n 

p .  D,,+~ 
- -  - -  e - [ v ( x , ,  + i ) - v ( x . )  ] / K T  (11) 

2 A numerical scheme similar to the one proposed here has also been developed by Peskin (see 
ref. 15). 
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A choice for the rates U" and D,, that is consistent with (11) is 

U" = KT  e_tO(x,+ ,)_ o(x,)j/2xr (12) 
Ax 2 

D" = KT  eCO(x,,)_ o(x,_,)3/2rr (13) 
.dx 2 

The prefactors in front of the exponentials in Eqs. (12) and (13) have been 
chosen so that if terms of o(Ax 2) are neglected, then (8) is equivalent to a 
second-order finite differencing of Eq. ( 1 ).t 17) 

Equation (8) can now be used to generate directly realizations of the 
stochastic process under consideration. This is done in the following way. 
We start the particle at an initial site x,,. The amount of time the particle 
waits at this site is an exponentially distributed random variable charac- 
terized by its mean value 

1 
( t )  (14) 

D" + U" 

The computer generation of exponentially distributed random numbers is 
accomplished by using the formula 

-1  
t D " +  U "ln(X) (15) 

where X is a uniformly distributed random number between zero and one. 
To determine which way the particle moves, a second uniformly distributed 
random number is generated by the computer. This number is then com- 
pared against the probability of a jump from x,  to x,,+~, 

u n 

P ( x " - - ) x " + ] ) - D " +  U" (16) 

and the probability of a jump from x,, to x,,_ 1, 

O n 

P ( x " - * x " - l )  D" +U" (17) 

By repeating this procedure, we generate individual realizations of the 
stochastic process described by (8). Note that no approximations have 
been used in generating these realizations. The approximation in this 
scheme is in going from the Fokker-Planck equation (1) to the master 
equation (8). As the master equation (11) possesses detailed balance, we 
are guaranteed that our scheme respects this property. 
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Fig. 2. (a) A realization of the stochastic process described by Eq. (18) using the discrete- 
space method. The parameters used to generate this figure were E =  10.0, = =  10/1 I, F =  1.0, 
K T =  1.0, a n d / I x  = 0.05. (b) A realization of the same stochastic process as shown in (a). For 
this case time was taken to be discrete. The time step used in this figure was /It = 0.0025. 
(e) A piecewise linear potential. The max imum height of  the potential is E and occurs at x = ~. 
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Fig. 2. (Continued) 

This algorithm is easily generalizable to include all gradient systems. 
As an example consider the following nonequilibrium system: 

d x  
- - =  - v ' ( x ) + F + ~ ,  (18) 
dt  

For this process the potential to be used in determining the transitions 
rates is 

g ( x )  = v ( x )  - -  F x  (19)  

which gives the following expressions for U" and D": 

U n  _ K T  e - [ u ( x n +  1 ) - v {xn}  - F z l x ] / 2 K T  

- -  z j X  2 

D "  = K T  e [ Vl xn  j _ v( X n _  l ) _ F , ~ x  ] / 2 K  T 

A x  2 

(20) 

(21) 

(22) 

In Fig. 2a we show a realization of Eq. (18) using our algorithm. The 
potential v (x )  used to generate Fig. 2a was the periodic piecewise linear 
potential shown in Fig. 2c. The maxium height E of the potential was taken 
to be 5 and the position ~ where this maximum occurs was 5/6. The 
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Fig. 3. (a) A plot of  the current versus number  of  realizations. The parameters used to 
generate this figure were the same as in Fig. 2b, except F =  0. The measured current is a result 
of numerical error. (b) A plot of the log of the percent error in the numerically calculated 
current versus the log of the step size. 
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strength of the added force F was 4.0, A x  = 0.05, and K T =  1. In Fig. 2b a 
realization of the same process using the standard Euler method is shown. 
For  comparison, the time step was chosen according to conventional dif- 
fusive scaling, At  = A x 2 / K T =  0.0025. Figures 2a and 2b are not identical, 
as they correspond to two distinct realizations of a random process. From 
visual inspection, the size of the fluctuations and the average drift appear 
to be identical in the two plots, but qualitative differences are apparent. 

If the driving force F is set equal to zero and v(x)  is taken to be 
periodic, then the system described by (18) should produce no net drift. 
Figure 3a shows a plot of the net current versus the number of realizations 
used to calculate the current. The same potential and parameter values as 
in Fig. 2b were used to generate this figure. The current is clearly converg- 
ing to a nonzero value, illustrating the effects of numerical error. As a 
simple example to illustrate the second-order accuracy of our algorithm, we 
use it to calculate the current produced when v(x)  is set equal to zero and 
F =  1. For  this case the current is simply 1. The method used to calculate 
the current is described in Section 3. Figure 3b shows a plot of the log of 
the percent error of the numerically calculated current versus the log of Ax.  

The slope of the line in Fig. 3b is 2, indicating that the error is decreasing 
as the square of the step size. 

3. R A T C H E T S  

A simple mathematical model of a ratchet is a spatially anisotropic 
periodic potential. Particles subjected to ratchet potentials plus noise from 
both thermal and nonequilibrium sources can experience a nonzero 
average drift. Because these systems are driven by nonequilibrium fluctua- 
tions, they have been referred to as correlation ratchets. For  a general 
review of correlation ratchets and the mechanisms that lead to fluctuation- 
induced currents, the reader is referred to ref. 18. In this section we use two 
models of correlation ratchets, whose currents can be solved for exactly, tSI 
to test the accuracy and efficiency of our algorithm. 

The genergl form of the stochastic differential equation describing the 
two types of ratchets we will consider is 

- -  = - v ' ( x )  - u ' (x ,  t) + (2KT)I/z ~( t) (23) 
dt 

The time-dependent potential in (23) represents the nonequilibrium 
fluctuations that drive this process. For  simplicity, the fluctuations 
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in the potential, u ( x , t ) s { u + ( x ) , u _ ( x ) } ,  are governed by the master 
equation 

d ( P + , t ) ' ~  ( - I  I ) ( P + )  ,24) 
d t k P _ ( t ) J =  y - - I  P _  

where P+__(t) is the probability that u ( x , t ) = u •  Equation (24) 
represents a dichotomous Markov process in which the potential u(x, t) 
switches between the two possible values u+(x). The switching between the 
u+ and u_ is exponentially correlated and the switching time scale rc is 
determined by the rate y, i.e., rc = Y-~. This leads to the following Fokker- 
Planck equation for the entire procesg ~9~: 

+,x,_,  
L _ ( x )  - -  y/kp_ 

where 

L •  = Ox(v'(x) + u'• + KTO,.) (26) 

Two types of ratchets we will consider are illustrated in Figs. 4a and 
4b. In Fig. 4a the fluctuating part of the potential u(x, t) switches between 
T-Fx. That is, in the first state the particle feels a force due to the periodic 
potential plus an additional positive constant force F, and in the second 
state the particle feels the force due to the periodic potential plus an addi- 
tional negative constant force - F .  We will call this model the fluctuating- 
force ratchet to distinguish it from the second model. The second model, 
illustrated in Fig. 4b, will be termed the fluctuating-potential ratchet. In 
this case the time-dependent potential u(x, t) fluctuates between the two 
states u • ( x ) = +_ev( x ). 

Using the algorithm described in Section 2, we approximate Eq. (25) 
by the master equation 

d P  +,, n - -  

dt = U+ lp - D "  P . . . .  +lo . + , t z - -  l + + , n  "~- / J  + l + , n + l  

- U "  P + .,+ +YP- , , , -YP+, , ,  (27) 

dP_,, ,= U~_1 P - D "  P . . . .  + 1 1 9  . dt - --,n--1 - -  - - , n  - I - L /  - -  ~t - - , n + l  

- U "  P ,+ + y P + . , , - - y P _ .  (28) 
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Fig. 4. 

1 

(b) 

(a) The fluctuating-force ratchet. Ib) The fluctuating-potential ratchet. 
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where the transition rates are now given by 

K T  r u( x u +n = --;-'-4/i X _  e - - t  "'n+ l ) + U+('\'n+ l) -- t'(xn)--Ir ] /2KT] 

_ K T  e[ o(x.) + ,,+(x,,) - v{x._ i~ - ,, § {..-.- ~ )] /2KT] 
D +  - A x  2 

U" I T  _[vlxn+l)+u_(Xn+l)_V(Xn)_U_lxn)]/2KT ] 
- = - ~ X  2 e 

(29) 

K T  D n = e [ V ( x n ) + u - ( . ' , , ) - - v ( x n - l ) - - u - ( x n - 1 ) ] / 2 K T ]  
- A x  z 

In the simplified case that the periodic potential is piecewise linear; the 
current can be calculated exactly. (5~ These models therefore provide a 
benchmark for testing our algorithm. 

The current generated by the jump process that we are using to 
approximate the correlation ratchets is a function of transition rates U and 
D and the stationary probabilities ps and is found from the equation 

_ _ . , n  

J =  U + - I P  - D "  P l f " _ - t P  , - D "  P ,, (30) + , n - - 1  + + . n  "q-  v - -  n - - I  - - ,  

To determine the stationary probabilities, we need only solve the set of 
coupled linear equations obtained by setting the left-hand side of Eqs. (27) 
and (28) equal to zero. This procedure should be contrasted with the nor- 
mal method of averaging over many realizations of Eq. (23) that would 
have been necessary had we chosen to discretize time. Since Eqs. (27) and 
(28) are master equations, we are guaranteed that any initial values for the 
P_+.,, that are consistent with the condition ~ P+_.,, = 1 will evolve to the 
same unique stationary distribution. (2~ An efficient method of determining 
the stationary probabilities, therefore, is by numerically integrating Eqs. 
(27) and (28) forward in time, starting from an appropriate initial condi- 
tion. The reason this method works well is because the system relaxes 
exponentially to its stationary state. This method has the added advantage 
that it eliminates statistical errors associated with averaging over a finite 
number of realizations. We note that instead of integrating Eqs. (27) and 
(28) forward in time, we could have solved for the steady-state probabilities 
directly. This procedure effectively reduces the problem to inverting a 2N 
by 2N matrix, where 2N is the total number of states in the jump process, 
and for values of N that are not too large this approach could further 
reduce computational time. 

In Fig. 5 we present the results of our numerical calculations. The solid 
lines represent the exact analytic values for the current and the diamonds 
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Fig. 5. A plot of the current versus the log of the switching rate. The solid lines are the exact 
solutions and the diamonds are the results of numerical simulations. The upper curve is for 
the fluctuating-force ratchet and the lower curve is for the fluctuating-potential ratchet. 
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are the values computed numerically. The parameters used to generate this 
figure were 0t = 10/11, E =  10, Ax = 0.01, and KT= 1.0. The upper curve is 
the current produced by the fluctuating-force ratchet with F =  1. The lower 
curve is the current produced by the fluctuating potential with e = 1. The 
figure is a plot of the current versus the log of the switching rate. Note that 
we get extremely accurate results for over six orders of magnitude of the 
switching rate. The calculations to produce the data points for both curves 
took less than 1 hr on a SPARC workstation. Using the discrete-time 
method and averaging over many realizations of the stochastic process 
would have required a least 1 day of computing time to get statistics with 
reasonable error bars. 

In Fig. 6 we show a plot of the percent error in the numerical value of 
the current versus step size for the fluctuating-force ratchet, using the same 
parameters as in Fig. 5. The switching rate used to generate this plot was 
~, = 100. Note that for a step size of 0.02 the error in the current is already 
close to 1%. 

4. A T H R E E - S T A T E  R A T C H E T  

The dependence of the direction of noise-induced transport on the 
statistical properties of the nonequilibrium fluctuations was first discussed 
in ref. 8. In that work the characteristic of the noise that determined the 
direction of the current was the flatness. The flatness ~b of a random 
variable X is defined in terms of its second and forth moments as 

<x'> 
(X,_) z (31) 

For the two-state ratchets considered in Section 3, the flatness of the non- 
equilibrium fluctuations is constant, i.e., ~b = 1. These systems, therefore, 
cannot undergo current reversals. 

A more robust model is one in which the nonequilibrium fluctuations 
switch between three different states. Consider the stochastic process 
governed by the Fokker-Plack equation 

p,) [L(x)-Fa.,-y 2)' 
O, p2  = 0 L(x) - 

0 p 

L(x) + FOx-- Y / \ P 3 /  

(32) 

where L(x)=O.,.(v'(x)+KT0x). This system is very similar to the fluc- 
tuating-force ratchet described in Section 3, only this time a third state is 
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+F 

0 

~ - F  
Fig. 7. The stochastic process governing the fluctuating forces used in the three-state ratchet. 

included in which the fluctuating force is zero. Figure 7 illustrates the non- 
equilibrium fluctuations for this process. Note that transitions between 
states one and three are not allowed and that the parameter 2 is a measure 
of the relative amount of time spent in state 2 as opposed to states 1 and 
3. For  this process ~ = 1 + 1/22. 

The motivation for studying this particular system came from the 
interesting behavior discovered by Bier that occurs as y is variedJ 21~ He 
found that the current produced by this system changes directions as ~, is 
increased. He then went on to discover that depending on the value of 2 
he used, not one but two current reversals were possible as y was increased. 
These two cases are shown in Figs. 8a and 8b. 

Since the second current reversal occurs at high switching rates, i.e., 
y >> 1, a natural method to use to try and capture this behavior is a small-r,. 
perturbation expansionJ ~91 In this problem there are two types of limiting 
behavior amenable to perturbative techniques: (1) the fast noise limit and 
(2) the white noise limit. In the fast noise limit we simply allow y to 
become large, holding all other parameters fixed, and use r c = y - l  as the 
smallness parameter in our expansion. In the white noise limit the strength 
of the fluctuating force is scaled with the correlation time according to 

( D "~ ~/2 
F =  --  (33) \r,./ 

with D = O( 1 ) as r,.--* 0. This type of scaling produces an order-one- 
weighted delta function correlation function in the nonequilibrium fluctua- 
tions as y becomes largeJ 8~ The details of both perturbation expansions are 
outlined in the appendix. 

In the fast noise limit the current is found to be 

r 3 I- F4(a52 -- 3a~ r 
" "~ - "  Jo v'(x)3dx 

j = ~ [  (~ + 1) ' 

F "  [ '  v"(x))-' dx] + CKTJo v'(x)( O(r~) (34) 
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Plot of the current versus the log of switching rate for the three-state ratchet. The 

parameters were E = 8 ,  F=200.0,  a =  7/8, and (a) ; l= 1/3, (b) 2 =  1/4. 
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where 

I 

Z = fo e-~ (35) 

and 

Y= f/ e~ dx (36) 

There are several features of expression (34) worth noting. First of all it 
predicts a cubic dependence on the smallness parameter re. Second, the 
sign of the first term in expression (34) depends on the flatness. Because 
this term goes as F 4 and the second term goes as F 2, we expect for that 
large enough values of F the first term will dominate and current reversal 
will occur around $ = (3 + v/5)/2 = 2.62. Note, however, that the integral 
in the second term contains the square of the second derivative of the 
potential. For the cases we have considered thus far the potential has been 
taken to be piecewise linear, and the second derivative of such potentials 
contains delta functions. The integral of a delta function squared is 
undefined [formally ocg(0)=oo]  and this means that for the piecewise 
linear potential, the second term in our expansion is infinite! Obviously, 
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Fig. 9. A plot of one period of the smooth potential given by Eq. (37). 
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Fig. 10. (a) A plot of the current versus switching rate for the three-state ratchet. The solid 
line is the fast noise approximation and the diamonds are the numerical results. The 
parameters used to generate this plot were KT=0 .3 ,  F =  10.0, ) ,=2/5 ,  and J.x-=l/500. 
(b) The same data as in (a), plotted on a log-log plot. 
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the perturbation expansion we have chosen cannot be valid for nonsmooth 
potentials. Even for smooth potentials the integral in the second term may 
be quite large, allowing this term to make considerable contributions to the 
current. 

For the rest of this section we will consider the smooth potential 

_•( sin(4rcx) sin(6nx)'~ 
v(x) = sin(2nx) 2 + ~ ) (37) 

This potential is simply the first three terms of a Fourier series expansion 
of a piecewise linear potential. One period of this potential is plotted in 
Fig. 9. Figure 10a is a plot of the current versus switching rate 7. The solid 
line is the approximation given in (34) and the diamonds are the numerical 
values obtained using our algorithm. The parameters used to produce this 
plot were K T =  0.3, F =  10.0, 2 =2/5,  ~b = 9/4, and Ax = 1/500. Note that 
the numerics appear to be converging to the asymptotic approximation. 
Figure 10b is a log-log plot of the same data and clearly shows the con- 
vergence. 

For the potential given by Eq. (37), the second term in Eq. (34) always 
produces a positive contribution to the current. If we chose a value of ~b 
such that the first term is negative, then Eq. (34) predicts a current reversal 
as F is decreased. Figure 11 depicts this situation. The same parameters 
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<> 

i 2 0 4.0 6.0 
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Fig. 11. A plot of  the current versus the strength of the fluctuating force F. The same 
parameters were used to generate this plot as in Fig. 10a, except Y = 1000. 
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were used to produce this plot as in Fig. 10, except ), was fixed at 1000 and 
F was varied. Note that the approximation for the current accurately 
captures the current reversal and that the approximation is better for 
smaller values of F, as expected. 

In the white noise limit the current is 

reD2 fl J-(q~cr)3zy(r v'(x)3dx+O(r3J 2) (38) 

where a = (KT+ D/O) and 

1 

Z = Io e -~ dx (39) 

and 

1 

Y= Io e 'l')/" dx (40) 

Note that the first term in (34) is recovered from (38) in the limit D =  
F2rc ---, 0, but that the second term in (34) involving (v") 2 is lost. Figure 12 
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D 
Fig. 12. A plot of the current versus D for the three-state ratchet. The solid line is the white 
noise approximation and the diamonds are the numerical results. The parameters used to 
produce this plot were KT =0 .15 ,  2 = 1.0, Ax = 1/350, and 7 =  1000. 
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Fig. 13. A plot of the current versus the flatness ~b. The solid line is the white noise 
approximation and the diamonds are the numerical results. The parameters used to produce 
this plot were KT=0.15,  y =  1000.0, D =0.225, and A x =  1/350. 

shows a plot of the current versus D. Once again, the solid line is the 
current computed from Eq. (38) and the diamonds are the numerical 
results. The parameters used to produce this figure were KT=0.15, 
Ax= 1/350, 2 = 1, ~b = 1, and y=  1000. In the white noise limit the only 
parameter that determines the direction of the current is the flatness. Equa- 
tion (38) predicts a flux reversal for a flatness of 2.63. Figure 13 shows a 
plot of the current versus flatness. The parameters used to produce this plot 
were K T =  0.15, y=  1000.0, D =0.225, and Ax= 1/350. The position of the 
flux reversal is well captured by the white noise approximation for the 
current. 

5. CONCLUSIONS 

We have presented a fast, reliable numerical algorithm for studying 
noise-induced" transport processes. This algorithm has the important 
feature that it preserves the property of detailed balance for systems in 
equilibrium. Numerical schemes are frequently designed to preserve impor- 
tant features of the systems they are used to simulate: examples include 
algorithms that preserve the symplectic structure of Hamiltonian systems 
and algorithms that conserve the total flux in diffusive systems. A notable 
difference between those preserved properties and the property of detailed 
balance is that detailed balance represents a steady-state behavior of the 
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system and not a specific quantity to be conserved at each time step. The 
algorithm also provides an efficient means for calculating steady-state 
probability distributions and currents. 

Currently this scheme is only suited for systems whose forces are 
derivable from gradient vector fields. It is our hope, however, that this 
method can be generalized to include all force fields. It would also be 
desirable to extend this algorithm to higher order accuracy. A natural way 
of doing this might be to allow for the possibility of multiple steps in the 
jump process. These two issues are the focus of ongoing research. 

We have also presented perturbation calculations for a three-state 
ratchet. The fast noise calculation had the surprising result that it depended 
on the integral over the square of the second derivative of the periodic 
potential, which is divergent for piecewise linear potentials. This implies 
that the expansion we used is not valid for these types of potentials and a 
rethinking of this calculation is required. We were able to validate the 
correctness of our calculations for a smooth potential, however. 

A P P E N D I X  

We present a brief outline of the perturbation technique used to 
calculate the asymptotic values of the current presented in Section 4. For 
convenience the Fokker-Planck equation for the process is written in 
vector notation 

z , .O ,~ .  = z , . L I ~  - -  r,,FaxJ5 + K~b (A1) 

where/3 = (Pl, ,02, P3), the matrices K and J are defined to be 

K =  1 - 2 2  , J = 0 

0 2 - 0 - 

(A2) 

and I is the identity matrix. The first step in the calculation is to determine 
the right eigenvectors and eigenvalues of the matrix K. The eigenvectors are 

Q o = ~ l / ( l + 2 2 ) J ,  ~)l= , Q2= -22/(1 +22) 

\2 / (  1 + 22) /  - 2/( 1 + 22)// 2/( 1 + 22) 

(A3) 
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and have eigenvalues 0, - 1 ,  and - ( 1  + 22), respectively. In the fast noise 
limit, the stationary solution of Eq. (A1) is constructed in terms of integer 
powers of re, i.e., 

_ . ~ ( 1 )  t _ 2  ~ ( 2 )  ~. = ~(o).,. + ~ t ' . , .  -i- " ~r'~. + "'" (A4) 

The current may be expressed as 

j =j(ol + r,.j(,~ + r~.jO-.) + .. .  (A5) 

where the r',l contribution to the steady-state current is 

J '" '  = Q*0[ - ( v ' ( x )  +KTOx) I + F J ]  ~("' (A6) 

with Q*o = ( 1, 1, 1) the left eigenvector of the matrix K with eigenvalue zero. 
The terms in the expansion for/~, satisfy the equations 

0 = K,b(~. ~ 

0 = KpI~. I) + (LI + FO~.J). I~.-'{~ 

O=K~{.2) + (LI  + FO,.j). ~'~=(1) 

0 = K/5!~ 3) + (LI + FO,:J)/5~ 2) 

(A7) 

(A8) 

(A9) 

(AI0) 

The eigenvectors of K form a convenient basis in which to expand solutions 
of these equations. We must therefore determine the action of the matrix J 
on the Q vectors. We find 

JQo- Q, (Al l )  

22 Q0 + 1 
J Q , =  1 +22 ~ 2  (A12) 

JQ2 = Q, (A13) 

We now successively solve Eqs. (A7)-(A10). The solution of Eq. (A7) is 

fi(o) = ro(X) Qo (A14) s 

where ro(x) is an undetermined function of x. The functional form of r 0 will 
be determined when the equation for fi(~) is solved. This will continue to be 
the case as we solve for the higher order terms in the expansion. That is, 
the nth-order equation will only determine/~(") up to an unknown term of 
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the form r,,(x)Q_o. However, for n > 0 this is sufficient to calculate the 
nth-order contribution to the current. Up to third order in rc we find 

/9(I)=rl(X ) O_o--FO.~ro(x) Q, (A15) 

F 2 
/~'2) = r2(x) O.o-F(LO.,.ro+O.,.r]) Q., + (1 +22)  -------------~ 0] r~  (A16) 

( Oo-r L(LOxr~ (1-f z,t)- " / 

F 2 
+ (l+22)2(1-~LO2,.ro+Ox(LO,.ro+O.,., ' ,))Q2 (A17) 

where 

e - -  v ( x ) / K T  

r~ = Z (A18) 

22F2ro 
r~ (x) = (KT) 2 ( 1 + 22) [ v(x) - (v(x))  ] (A19) 

2FZXr~ { (v')2 ((v ')  2) 2).F 2 
r2(x)=KT(l+22)  v"2KT KT +iKT)2(1+22) ( ( v ) - v )  

+(KT)3 (1 +22 ) (/)2 -- ( / ) 2 ) )  - - / ) ( / ) )  "~- ( O 2 )  (A20) 

The brackets in Eqs. (A19) and (A20) indicate averaging over one period 
of the potential v(x) with respect to to(X). Equation (A6) can now be used 
to calculate the current up to third order in z,.. When this is done, the first 
nonzero contribution to the current turns out to be jr31 and is exactly 
expression (34) of Section 4. 

In the white noise limit the strength of the fluctuating force F is scaled 
with z,. in the following way: F =  (D/r,.) ~/2. This scaling is used so that in 
the limit of small z,., the correlation function of the fluctuating-force pro- 
cess approaches a delta function. The perturbation calculation for the white 
noise limit is identical to the fast noise limit, only this time the expansion 
of fi is in powers of r~./2, i.e., 

_ t~(0) 4 . . g  1/2/~ (1/2) _1 ~(1) 
s--t-'s -- c ,-s +%b's + "'" 

and the j(,,/2l contribution to the current is given by 

(A21) 

j~"/2}=Qt[-(v '(x)+ KTOx) Iff~"/2)-DmO,.a~ ~'/2+1/21 ] (A22) 
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The terms in the expansion (A21) of/~s now satisfy the equations 

0 = K/~ ~~ (A23) 

0 = Kp  ~ 1/2~ + Dl/20,.jp(o~ (A24) 

0 = k/5 r + D 1/26q,:J/~(1/2) -t- LI/~ {~ (A25) 

and the procedure continues exactly as before. This time the first nonzero 
contribution to the current is the j~l~ term and is given as Eq. (38) in 
Section 4. 
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